$\left| {\,\begin{array}{*{20}{c}}{{{\sin }^2}x}&{{{\cos }^2}x}&1\\{{{\cos }^2}x}&{{{\sin }^2}x}&1\\{ - 10}&{12}&2\end{array}\,} \right| = $
$0$
$12{\cos ^2}x - 10{\sin ^2}x$
$12{\sin ^2}x - 10{\cos ^2}x - 2$
$10\sin\, 2x$
ધારોકે $D _{ k }=\left|\begin{array}{ccc}1 & 2 k & 2 k -1 \\ n & n ^2+ n +2 & n ^2 \\ n & n ^2+ n & n ^2+ n +2\end{array}\right|$.જો $\sum \limits_{ k =1}^n$ $D _{ k }=96$ હોય,તો $n=..........$
જો $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x \ne 0$ અને $a + b + c \ne 0$, તો $x$ મેળવો.
સુરેખ સમીકરણ સંહતિ $x + y + z = 1;x + ay + z = 1;ax + by + z = 0$ ને ઉકેલ ન હોય તે માટેની $'b'$ ની ભિન્ન કિંમતોનો ગણ જો $S$ હોય તો , $S$ એ . ..
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ ના બીજ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{1 + i}&{1 - i}&i\\{1 - i}&i&{1 + i}\\i&{1 + i}&{1 - i}\end{array}\,} \right| = $