ધારો કે $\mathrm{S}_{\mathrm{n}}$ એક સમાંતર શ્રેણીના પ્રથમ $\mathrm{n}$ પદ્દોનો સરવાળો દર્શાવે છે. જે $\mathrm{S}_{10}=390$ તથા દસમા અને પાંચમા પદોનો ગુણોત્તર $15: 7$ હોય, તો $S_{15}-S_5=$........................
$800$
$890$
$790$
$690$
$2$ અથવા $5$ વડે વિભાજ્ય હોય તેવી $1$ થી $100$ વચ્ચેની સંખ્યાનો સરવાળો મેળવો.
જો સમાંતર શ્રેણીમાં આવેલી ત્રણ સંખ્યાઓનો સરવાળો $24$ અને તેમનો ગુણાકાર $440$ હોય તો આ સંખ્યાઓ શોધો.
વધતી સમાંતર શ્રેણીમાં ચાર જુદા જુદા પૂર્ણાકો લો. તેમાંનો એક પૂર્ણાક બાકીના ત્રણ પૂર્ણાકોના વર્ગના સરવાળા બરાબર છે. તો ચાર સંખ્યાઓનો સામાન્ય તફાવત કેટલો થાય ?
જો સમાંતર શ્રેણીનું પ્રથમ પદ $a$ સામાન્ય તફાવત $1 $ અને અંતિમ પદ $b$ પદ, હોય, તો તેનો સરવાળો કેટલો થાય ?
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $3n^2 + 5n$ હોય અને $T_m = 164$ હોય તો $m = ….$