જો સમાંતર શ્રેણીનું પ્રથમ પદ $a$ સામાન્ય તફાવત $1 $ અને અંતિમ પદ $b$ પદ, હોય, તો તેનો સરવાળો કેટલો થાય ?
$\frac{{(a\, + \,b)\,(1\, + \,a\, - \,b)}}{2}$
$\frac{{(a\, + \,b)\,(1\, - \,a\, + \,b)}}{2}$
$\frac{{(a + \,b)\,(1 - \,a)}}{2}$
$(a + b) (1 - a + b)$
જો કોઈ સમાંતર શ્રેણી માટે $p^{th}$ અને $q^{th}$ પદ માટેનો સમાંતર મધ્યક તે જ શ્રેણીના $r^{th}$ અને $s^{th}$ ના સમાંતર મધ્યક જેટલો થાય તો $p + q$ ની કિમત મેળવો.
જો ${\log _3}2,\;{\log _3}({2^x} - 5)$ અને ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ સંમાતર શ્રેણીમાં હોય તો $x$= _________.
ધારોકે $\alpha, \beta$ અને $\gamma$ ત્રણ ધન વાસ્તવિક સંખ્યાઓ છે. ધારોકે $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in R$ અને $g: R \rightarrow R$ એવું છે કે જેથી પ્રત્યેક $x \in R$ માટે $g(f(x))=x$ થાય. ને $a _{1}, a _{2}, a _{3}, \ldots, a _{ n }$ સમાંતર શ્રેણીમાં હોય અને તેનો મધ્યક શૂન્ય હોય, તો $f\left(g\left(\frac{1}{ n } \sum_{i=1}^{ n } f\left( a _{i}\right)\right)\right)$ ની કિંમત .............. છે.
સમાંતર શ્રેણીઓ $3,7,11, \ldots ., 407$ અને $2,9,16, \ldots . .709$ ના સામાન્ય પદોની સંખ્યા મેળવો.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=2^{n}$