ધારો કે $\alpha$ અને $\beta$ એ સમીકરણ $p x^2+q x-r=0$ નાં બીજ છે, જ્યાં $p \neq 0$.જે $p, q$ અને $r$ એ એક અચળ ન હોય તેવી ગુણોત્તર શ્રેણી ($G.P.$) ના ક્રમિક પદો હોય અને $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$ હોય, તો $(\alpha-\beta)^2$ નું મૂલ્ય .............. છે.
$\frac{80}{9}$
$9$
$\frac{20}{3}$
$8$
સમ ગુણોત્તર શ્રેણીના પ્રથમ બે પદનો સરવાળો $12$ છે. ત્રીજા અને ચોથા પદનો સરવાળો $48$ છે. ગુણોત્તર શ્રેણીના પદો ક્રમિક રીતે ઘન અને ઋણ છે. તો પ્રથમ પદ કયું હોય ?
બેંકમાં $Rs.$ $500$, $10 \%$ ના વાર્ષિક ચક્રવૃદ્ધિ વ્યાજે મૂકીએ, તો $10$ વર્ષને અંતે કેટલી રકમ મળે ?
જો $(y - x), 2(y - a)$ અને $(y - z)$ સ્વરીત શ્રેણીમાં હોય તો $x -a, y -a, z - a …..$ શ્રેણીમાં છે.
જો $a$ અને $b$ નો સમગુણોત્તર મધ્યક $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ હોય, તો નું મૂલ્ય શોધો.
એક ધન પદોની વધતી સમગુણોત્તર શ્રેણીમાં, બીજા અને છઠ્ઠા પદનો સરવાળો $\frac{70}{3}$ છે તથા ત્રીજા અને પાંચમાં પદનો ગુણાકાર $49$ છે. તો ચોથા, છઠ્ઠા અને આઠમાં પદોનો સરવાળો .......... છે.