જો $a$ અને $b$ નો સમગુણોત્તર મધ્યક $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ હોય, તો નું મૂલ્ય શોધો.
$M$. of $a$ and $b$ is $\sqrt{a b}$
By the given condition: $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\sqrt{a b}$
Squaring both sides, we obtain
$\frac{\left(a^{n+1}+b^{n+1}\right)^{2}}{\left(a^{n}+b^{n}\right)^{2}}=a b$
$\Rightarrow a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=(a b)\left(a^{2 n}+2 a^{n} b^{n}+b^{2 n}\right)$
$\Rightarrow a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=a^{2 n+1} b+2 a^{n+1} b^{n+1}+a b^{2 n+1}$
$\Rightarrow a^{2 n+2}+b^{2 n+2}=a^{2 n+1} b+a b^{2 n+1}$
$\Rightarrow a^{2 n+2}-a^{2 n+1} b=a b^{2 n+1}-b^{2 n+2}$
$\Rightarrow a^{2 n+1}(a-b)=b^{2 n+1}(a-b)$
$\Rightarrow\left(\frac{a}{b}\right)^{2 n+1}=1=\left(\frac{a}{b}\right)^{0}$
$\Rightarrow 2 n+1=0$
$\Rightarrow n=\frac{-1}{2}$
જો $\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}},\left( {x \ne 0} \right)$ હોય તો $a$, $b$, $c$, $d$ એ ......... શ્રેણીમાં છે
સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : $0.15,0.015,0.0015........$ પ્રથમ $20$ પદ
જો સમગુણોત્તર શ્રેણીનું $(m + n)$ મું પદ $9$ અને $(m - n)$ મું પદ $4$ હોય, તો $m^{th}$ મું પદ કયું હશે ?
એક સમગુણોત્તર શ્રેણીનું $8$ મું પદ $192$ છે અને સામાન્ય ગુણોત્તર $2$ છે, તો તેનું $12$ મું પદ શોધો.
જો ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (જ્યાં $i = \sqrt{-1}),$ હોય તો $x_1.x_2.x_3......\infty ,$ ની કિમત મેળવો