ધારો કે $S_n$ એ, સમાંતર શ્રેણી $3,7,11, \ldots . . .$. નાં $n$ પદોનો સરવાળો છે. જો $40<\left(\frac{6}{n(n+1)} \sum_{k=1}^n S_k\right)<42$ હોય,તો $n=$___________. 

  • [JEE MAIN 2024]
  • A

    $9$

  • B

    $8$

  • C

    $10$

  • D

    $7$

Similar Questions

$a$ અને $b$ બે સંખ્યાઓ છે. $A$ સમાંતર મધ્યક અને $S$  એ $a $ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો દર્શાવે તો $S/A$ કોના ઉપર આધાર રાખે છે ?

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_{17}},{a_{24}}$ પદ શોધો : $a_{n}=4 n-3$ 

જો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ ન હોય, તો $n$ નું મૂલ્ય શોધો.

જો $\frac{1}{{b\, + \,c}},\,\frac{1}{{c\, + \,a}},\,\frac{1}{{a\, + \,b}}$ સમાંતર શ્રેણીમાં હોય, તો $a^2, b^2, c^2$ કઈ શ્રેણીમાં હશે ?

જો ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ અને $a,\;b,\;c$ એ સમગુણોતર શ્રેણીમાં હોય તો $x,\;y,\;z$ ................... શ્રેણીમાં છે.

  • [IIT 1969]