જો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ ન હોય, તો $n$ નું મૂલ્ય શોધો.
$A.M.$ of $a$ and $b$ $=\frac{a+b}{2}$
According to the given condition,
$\frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$
$\Rightarrow(a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right)$
$\Rightarrow a^{n}+a b^{n-1}+b a^{n-1}+b^{n}=2 a^{n}+2 b^{n}$
$\Rightarrow a b^{n-1}+a^{n-1} b=a^{n}+b^{n}$
$\Rightarrow a b^{n-1}-b^{n}=a^{n}-a^{n-1} b$
$\Rightarrow b^{n-1}(a-b)=a^{n-1}(a-b)$
$\Rightarrow b^{n-1}=a^{n-1}$
$\Rightarrow\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0}$
$\Rightarrow n-1=0$
$\Rightarrow n=1$
સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $2n + 3n^2$ છે અને નવી સમાંતર શ્રેણી બનાવમાં આવે છે કે જેમાં પ્રથમ પદ સમાન હોય અને સામાન્ય તફાવત બમણો હોય તો નવી શ્રેણીના $n$ પદનો સરવાળો મેળવો.
પ્રથમ ત્રણ પદો લખો : $a_{n}=2 n+5$
${a_1},{a_2},.......,{a_{30}}$ એ સમાંતર શ્રેણીમાં છે. $S = \sum\limits_{i = 1}^{30} {{a_i}} $ અને $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $. જો ${a_5} = 27$ અને $S - 2T = 75$ , તો $a_{10}$ મેળવો.
$\Delta ABC$ માં $A, B, C $ માંથી સામેની બાજુઓ પર દારેલા વેધ સ્વરિત શ્રેણીમાં હોય તો $sinA, sinB, sinC ............. $ શ્રેણીમાં હોય