Let $g: R \rightarrow R$ be a non constant twice differentiable such that $g^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{3}{2}\right)$. If a real valued function $f$ is defined as $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, then
$f^{\prime}(x)=0$ for atleast two $x$ in $(0,2)$
$f^{\prime \prime}(x)=0$ for exactly one $x$ in $(0,1)$
$\mathrm{f}^{\prime}(\mathrm{x})=0$ for no $\mathrm{x}$ in $(0,1)$
$\mathrm{f}^{\prime}\left(\frac{3}{2}\right)+\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=1$
Let $f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2}\ln x,\,x > 0} \\
{0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0}
\end{array}} \right\}$, Rolle’s theorem is applicable to $ f $ for $x \in [0,1]$, if $\alpha = $
If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f ^{\prime}\left(\frac{4}{3}\right)=0,$ then ordered pair $( a , b )$ is equal to
For the function$x + {1 \over x},x \in [1,\,3]$, the value of $ c$ for the mean value theorem is
Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?
$f(x)=[x]$ for $x \in[5,9]$
If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has