Let $g: R \rightarrow R$ be a non constant twice differentiable such that $g^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{3}{2}\right)$. If a real valued function $f$ is defined as $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, then

  • [JEE MAIN 2024]
  • A

     $f^{\prime}(x)=0$ for atleast two $x$ in $(0,2)$

  • B

     $f^{\prime \prime}(x)=0$ for exactly one $x$ in $(0,1)$

  • C

     $\mathrm{f}^{\prime}(\mathrm{x})=0$ for no $\mathrm{x}$ in $(0,1)$

  • D

     $\mathrm{f}^{\prime}\left(\frac{3}{2}\right)+\mathrm{f}^{\prime}\left(\frac{1}{2}\right)=1$

Similar Questions

Let $f(x) = \left\{ {\begin{array}{*{20}{c}}
  {{x^2}\ln x,\,x > 0} \\ 
  {0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0} 
\end{array}} \right\}$, Rolle’s theorem is applicable to $ f $ for $x \in [0,1]$, if $\alpha = $

  • [IIT 2004]

If Rolle's theorem holds for the function $f(x)=x^{3}-a x^{2}+b x-4, x \in[1,2]$ with $f ^{\prime}\left(\frac{4}{3}\right)=0,$ then ordered pair $( a , b )$ is equal to

  • [JEE MAIN 2021]

For the function$x + {1 \over x},x \in [1,\,3]$, the value of $ c$  for the mean value theorem is

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=[x]$ for $x \in[5,9]$

If $f(x)$ = $sin^2x + xsin2x.logx$, then $f(x)$ = $0$ has