Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

$f(x)=[x]$ for $x \in[5,9]$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if

a) $f$ is continuous on $[a, b]$

b) $f$ is continuous on $(a, b)$

c) $f(a)=f(b)$

Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

$f(x)=[x]$ for $x \in[5,9]$

It is evident that the given function $f(x)$ is not continuous at every integral point.

In particular, $f(x)$ is not continuous at $x=5$ and $x=9$

$\Rightarrow f(x)$ is not continuous in $[5,9]$

Also $f(5)=[5]=5$ and $f(9)=[9]=9$

$\therefore f(5) \neq f(9)$

The differentiability of $f$ in $(5,9)$ is checked as follows.

Let $\mathrm{n}$ be an integer such that $n \in(5,9)$

The left hand limit limit of $f$ at $x=n$ is.

$\mathop {\lim }\limits_{x \to 0'} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{x \to 0'} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{x \to 0'} \frac{{n - 1 - n}}{h} = \mathop {\lim }\limits_{x \to 0'} 0 = 0$

The right hand limit of $f$ at $\mathrm{x}=\mathrm{n}$ is,

$\mathop {\lim }\limits_{h \to {0^\prime }} \frac{{f(n + h) - f(n)}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{[n + h] - [n]}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} \frac{{n - n}}{h} = \mathop {\lim }\limits_{h \to {0^\prime }} 0 = 0$

Since the left and right hand limits of $f$ at $x=n$ are not equal, $f$ is not differentiable at $x=n$

$\therefore f$ is not differentiable in $(5,9).$

It is observed that $f$ does not satisfy all the conditions of the hypothesis of Rolle's Theorem.

Hence, Rolle's Theorem is not applicable for $f(x)=[x]$ for $x \in[5,9].$

Similar Questions

If the function $f(x) = {x^3} - 6{x^2} + ax + b$ satisfies Rolle’s theorem in the interval $[1,\,3]$ and $f'\left( {{{2\sqrt 3 + 1} \over {\sqrt 3 }}} \right) = 0$, then $a =$ ..............

For a real number $x$ let $[x]$ denote the largest number less than or equal to $x$. For $x \in R$ let $f(x)=[x] \sin \pi x$. Then,

  • [KVPY 2014]

The value of $c$ in the Lagrange's mean value theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ when $\mathrm{x} \in[0,1]$ is

  • [JEE MAIN 2020]

The abscissa of the points of the curve $y = {x^3}$ in the interval $ [-2, 2]$, where the slope of the tangents can be obtained by mean value theorem for the interval  $[-2, 2], $ are

The function $f(x) = {(x - 3)^2}$ satisfies all the conditions of mean value theorem in $[3, 4].$ A point on $y = {(x - 3)^2}$, where the tangent is parallel to the chord joining $ (3, 0)$  and $(4, 1)$  is