For the function$x + {1 \over x},x \in [1,\,3]$, the value of $ c$  for the mean value theorem is

  • A

    $1$

  • B

    $\sqrt 3 $

  • C

    $2$

  • D

    None of these

Similar Questions

If the function  $f(x) =  - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals

Mean value theorem $f(b) -f(a) = (b -a) f '(x_1);$ from $a < x_1 < b,$ if $f(x) = 1/x$ then $x_1 = ?$

Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then

  • [JEE MAIN 2021]

Let $f (1) = - 2$ and $f ' (x) \ge 4.2$ for $1 \le x \le 6$. The smallest possible value of $f (6)$, is

Let $a > 0$ and $f$ be continuous in $[- a, a]$. Suppose that $f ' (x) $ exists and $f ' (x) \le 1$ for all $x \in (- a, a)$. If $f (a) = a$ and $f (- a) = - a$ then $f (0)$