જો બે ગણો $A$ અને $B$ હોય ,તો $A - B$ = . . . .
$A \cap {B^c}$
${A^c} \cap B$
$A \cap B$
એકપણ નહી.
વિધાન સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો : $\{2,3,4,5\}$ અને $\{3,6\}$ પરસ્પર અલગગણ છે.
જો $A = \{x : x$ એ $4$ નો ગુણક છે$.\}$ અને $B = \{x : x$ એ $6$ નો ગુણક છે$.\}$ તો $A \cap B$ માં . . . . ના ગુણકનો સમાવેશ થાય.
ગણ $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, તો $A \cup (B \cap C)$ મેળવો.
જો $A$ અને $B$ એ ગણ $S$ = $\{1,2,3,4\}$ ના બે ઉપગણો છે કે જેથી $A\ \cup \ B$ = $S$ થાય તો $(A, B)$ ની કેટલી જોડ મળે ?
જો બે ગણો $A$ અને $B$ છે કેે જેથી$n(A) = 0.16,\,n(B) = 0.14,\,n(A \cup B) = 0.25$. તો $n(A \cap B) =$