Let $A$ and $B$ be two sets in the universal set. Then $A - B$ equals
$A \cap {B^c}$
${A^c} \cap B$
$A \cap B$
None of these
Using that for any sets $\mathrm{A}$ and $\mathrm{B},$
$A \cup(A \cap B)=A$
Let $A=\{a, b\}, B=\{a, b, c\} .$ Is $A \subset B \,?$ What is $A \cup B \,?$
If $A = \{x : x$ is a multiple of $4\}$ and $B = \{x : x$ is a multiple of $6\}$ then $A \cap B$ consists of all multiples of
If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\} ;$ find
$A \cap C \cap D$
Given the sets $A = \{ 1,\,2,\,3\} ,\,B = \{ 3,4\} , C = \{4, 5, 6\}$, then $A \cup (B \cap C)$ is