The first term of a $G.P.$ is $1 .$ The sum of the third term and fifth term is $90 .$ Find the common ratio of $G.P.$
Let $a$ and $r$ be the first term and the common ratio of the $G.P.$ respectively.
$\therefore $ $a=1$ $a_{3}=a r^{2}=r^{2} \quad a_{5}=a r^{4}=r^{4}$
$\therefore r^{2}+r^{4}=90$
$\Rightarrow r^{4}+r^{2}-90=0$
$\Rightarrow r^{2}=\frac{-1+\sqrt{1+360}}{2}=\frac{-1 \pm \sqrt{361}}{2}=-10$ or $9$
$\therefore r=\pm 3$ [ Taking real roots ]
Thus, the common ratio of the $G.P.$ is $±3$ .
Let $a_1, a_2, a_3, \ldots .$. be a sequence of positive integers in arithmetic progression with common difference $2$. Also, let $b_1, b_2, b_3, \ldots .$. be a sequence of positive integers in geometric progression with common ratio $2$ . If $a_1=b_1=c$, then the number of all possible values of $c$, for which the equality
$2\left(a_1+a_2+\ldots .+a_n\right)=b_1+b_2+\ldots . .+b_n$
holds for some positive integer $n$, is. . . . . . .
Let ${a_1},{a_2}...,{a_{10}}$ be a $G.P.$ If $\frac{{{a_3}}}{{{a_1}}} = 25,$ then $\frac {{{a_9}}}{{{a_{ 5}}}}$ equal
If $S$ is the sum to infinity of a $G.P.$, whose first term is $a$, then the sum of the first $n$ terms is
Let the first term $a$ and the common ratio $r$ of a geometric progression be positive integers. If the sum of its squares of first three terms is $33033$, then the sum of these three terms is equal to
Given a $G.P.$ with $a=729$ and $7^{\text {th }}$ term $64,$ determine $S_{7}$