Let $a \neq b$ be two non-zero real numbers.Then the number of elements in the set $X =\left\{ z \in C : \operatorname{Re}\left(a z^2+ bz \right)= a \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$ is equal to
$1$
$3$
$0$
$2$
If $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ is a real number, then an argument of $\sin \theta+\mathrm{i} \cos \theta$ is
Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is
$\left| {(1 + i)\frac{{(2 + i)}}{{(3 + i)}}} \right| = $
If ${z_1},{z_2},{z_3}$ are complex numbers such that $|{z_1}|\, = \,|{z_2}|\, = $ $\,|{z_3}|\, = $ $\left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1\,,$ then${\rm{ }}|{z_1} + {z_2} + {z_3}|$ is
The conjugate of $\frac{{{{(2 + i)}^2}}}{{3 + i}},$ in the form of $a + ib$, is