ધારો કે $\alpha_1, \alpha_2, \ldots, \alpha_7$ એ સમીકરણ $x^7+3 x^5-13 x^3-15 x=0$ નાં બીજ છે અને $\left|a_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ તો $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6=......$
$9$
$8$
$7$
$6$
જો $\alpha$, $\beta$ ,$\gamma$ એ સમીકરણ $x^3 -x -1 = 0$ ના ઉકેલો હોય તો જે સમીકરણના ઉકેલો $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ હોય તે સમીકરણ મેળવો
સમીકરણ $x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14$ નું લઘુત્તમ મૂલ્ય કેટલું થાય ?
સમીકરણ $x|x|-5|x+2|+6$ = 0ના વાસ્તવિક બીજોની સંખ્યા $..........$ છે.
જો $\alpha ,\beta ,\gamma$ એ સમીકરણ $x^3 - x - 2 = 0$ ના બીજો હોય તો $\alpha^5 + \beta^5 + \gamma^5$ ની કિમત મેળવો
ધારો કે $\alpha, \beta$ એ $x^2+\sqrt{2} x-8=0$ નાં બીજ છે. જો $\mathrm{U}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$, તો $\frac{\mathrm{U}_{10}+\sqrt{2} \mathrm{U}_9}{2 \mathrm{U}_8}=$...........