कुछ धनात्मक पूर्णांक संख्याओं $a$ और $b$ के लिए यदि $t$ एक वास्तविक संख्या इस प्रकार है कि $t^2=a t+b$. तब किसी धनात्मक पूर्णांक $a$ और $b$ के लिए, $t^3$ निम्नलिखित में किसके बराबर नहीं है?
$4 t+3$
$8 t+5$
$10 t+3$
$6 t+5$
समीकरण $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ के वास्तविक मूलों की संख्या है
यदि $\alpha, \beta $ $\gamma$ समीकरण $2{x^3} - 3{x^2} + 6x + 1 = 0$ के मूल हों, तो ${\alpha ^2} + {\beta ^2} + {\gamma ^2}$ का मान है
दो बहुपद $p(x), q(x)$ इस प्रकार हैं: $p(x)=x^2-5 x+a$ और $q(x)=x^2-3 x+b$ जहां $a, b$ प्राकृत संख्याएँ हैं । मान लें कि $\operatorname{hcf}(p(x), q(x))=x-1$ और $k(x)=\operatorname{lcm}(p(x), q(x))$ है। यदि बहुपद $k(x)$ के अधिकतम घात के गुणांक का मान 1 है, तो बहुपद $(x-1)+k(x)$ के शून्यकों का योग होगा:
यदि $\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$ तो
माना $\alpha$ तथा $\beta$ दो वास्तविक संख्याऐं है जिनके लिए $\alpha+\beta=1$ तथा $\alpha \beta=-1$ हैं। माना किसी पूर्णांक $n \geq 1$ के लिए $p _{ n }=(\alpha)^{ n }+(\beta)^{ n }, p _{ n -1}=11$ तथा $p _{ n +1}=29$ हैं। तो $p _{ n }^{2}$ का मान है ........