किसी दीर्घवृत $(eilipse)$ $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a > b > 0$ पर $P$ एक स्वेच्छ बिन्दु $(arbitrary\,point)$ है। मान लीजिए कि $F _1$ और $F _2$ दीर्घवृत्त की नाभियाँ $(foci)$ हैं। $PF _1 F _2$ त्रिभुज के केन्द्रक $(centroid)$ का बिन्दुपथ $(locus)$ जब $P$ इस दीर्घवृत्त $(ellipse)$ पर घुमता है, क्या होगा ?
वृत्त $(a\,circe)$
परवलय $(parabola)$
दीर्घवृत्त $(an\,ellipse)$
अतिपरवलय $(hyperbola)$
दीर्घवृत्त $3{x^2} + 2{y^2} = 5$ पर बिन्दु $(1, 2)$ से डाली गयी स्पशियों के बीच का कोण होगा
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(\pm 6,0),$ नाभियाँ $(±4,0)$
माना वक्रो $4\left( x ^2+ y ^2\right)=9$ तथा $y ^2=4 x$ की उभयनिष्ठ स्पर्श रेखायें बिन्दु $Q$ पर काटती है। माना दीर्घवृत्त जिसका केन्द्र मूलबिन्दु $O$ पर है, के लघुअक्ष तथा दीर्घअक्ष की लम्बाई क्रमशः $OQ$ तथा 6 के बराबर है। यदि दीर्घवृत्त की उत्केन्द्रता तथा नाभिलम्ब की लम्बाई को क्रमशः $e$ तथा $l$ से दर्शाते है, तो $\frac{l}{ e ^2}$ बराबर है $..........$
माना $S$ तथा $S ^{\prime}$ दीर्घवृत्त की नाभि है तथा इसके लघुअक्ष का कोई एक सिरा $B$ है। यदि त्रिभुज $S ^{\prime} BS$ एक समकोण त्रिभुज है जिसमें $\angle B =90^{\circ}$ तथा क्षेत्रफल $\left(\triangle S ^{\prime} BS \right)$ $=8$ वर्ग इकाई हो, तो दीर्घवृत्त के नाभिलम्ब की लम्बाई होगी
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$