Let $S=\{1,2,3, \ldots \ldots, n\}$ and $A=\{(a, b) \mid 1 \leq$ $a, b \leq n\}=S \times S$. A subset $B$ of $A$ is said to be a good subset if $(x, x) \in B$ for every $x \in S$. Then, the number of good subsets of $A$ is
$1$
$2^n$
$2^{n(n-1)}$
$2^{n^2}$
Let $S$ be the set of all ordered pairs $(x, y)$ of positive integers satisfying the condition $x^2-y^2=12345678$. Then,
If $X = \{ {4^n} - 3n - 1:n \in N\} $ and $Y = \{ 9(n - 1):n \in N\} ,$ then $X \cup Y$ is equal to
The number of elements in the set $\left\{n \in Z :\left|n^2-10 n+19\right| < 6\right\}$ is $...........$
Let $A = \{x:x \in R,\,|x|\, < 1\}\,;$ $B = \{x:x \in R,\,|x - 1| \ge 1\}$ and $A \cup B = R - D,$then the set $D$ is
Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If
$A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in N, a_{1}, a_{2}, a_{3}, \ldots, a_{k} \in S\right\}$ then the sum of all the elements in the set $T - A$ is equal to $......$