The number of elements in the set $\left\{n \in Z :\left|n^2-10 n+19\right| < 6\right\}$ is $...........$
$12$
$18$
$24$
$6$
Let $A =\{ x \in R :| x +1|<2\}$ and $B=\{x \in R:|x-1| \geq 2\}$. Then which one of the following statements is NOT true ?
Let $A=\left\{n \in N \mid n^{2} \leq n+10,000\right\}, B=\{3 k+1 \mid k \in N\}$ and $C=\{2 k \mid k \in N\}$, then the sum of all the elements of the set $A \cap(B-C)$ is equal to $.....$
Let $A = \{x:x \in R,\,|x|\, < 1\}\,;$ $B = \{x:x \in R,\,|x - 1| \ge 1\}$ and $A \cup B = R - D,$then the set $D$ is
Let $A_1, A_2, \ldots \ldots, A_m$ be non-empty subsets of $\{1,2,3, \ldots, 100\}$ satisfying the following conditions:
$1.$ The numbers $\left|A_1\right|,\left|A_2\right|, \ldots,\left|A_m\right|$ are distinct.
$2.$ $A_1, A_2, \ldots, A_m$ are pairwise disjoint.(Here $|A|$ donotes the number of elements in the set $A$ )Then, the maximum possible value of $m$ is
Let $S = \{ x \in R:x \ge 0$ and $2\left| {\sqrt x - 3} \right| + \sqrt x \left( {\sqrt x - 6} \right) + 6 = 0\} $ then $S:$ . . .