मान लें कि $n \geq 3$ है। $n$ संख्याओं की एक सूची $0 < x_1 < x_2 < \cdots < x_n$ का औसत $\mu$ तथा नियत विचलन $(standard\,deviation)$ $\sigma$ है। एक नई सूची $y_1=0$, $y_2=x_2, \ldots, y_{n-1}=x_{n-1}, y_n=x_1+x_n$ बनाई जाती है जिसका औसत $\hat{\mu}$ तथा नियत विचलन $\hat{\sigma}$ है। तब निम्नलिखित में से कौन सा कथन सत्य है?

  • [KVPY 2013]
  • A

    $\mu=\hat{\mu}, \sigma \leq \hat{\sigma}$

  • B

    $\mu=\hat{\mu}, \sigma \geq \hat{\sigma}$

  • C

    $\sigma=\hat{\sigma}$

  • D

    $\mu$ may or may not be equal to $\hat{\mu}$

Similar Questions

सात प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $8$ तथा $16$ हैं। यदि इनमें से पाँच प्रेक्षण $2,4,10,12,14$ हैं तो शेष दो प्रेक्षण ज्ञात कीजिए।

मान $9=\mathrm{x}_1 < \mathrm{x}_2 < \ldots<\mathrm{x}_7$ एक $A.P.$ में हैं, जिसका सर्वा अन्तर $\mathrm{d}$ है। यदि $\mathrm{x}_1, \mathrm{x}_2 \ldots, \mathrm{x}_7$ का मानक विचलन $4$ है तथा माध्य $\overline{\mathrm{x}}$ है, तो $\overline{\mathrm{x}}+\mathrm{x}_6$ बराबर है:

  • [JEE MAIN 2023]

माना कि $X$ एक याद्छिक चर (random variable) है, और माना कि $P(X=x), X$ के मान $x$ लेने की प्रायिकता (probability) को दर्शाता है। माना कि बिंदु (points) $(x, P(X=x)), x=0,1,2,3,4, x y$-तल में एक नियत सरल रेखा (fixed straight line) पर स्थित हैं, और सभी $x \in R -\{0,1,2,3,4\}$ के लिए $P(X=x)=0$ है। यदि $X$ का माध्य (mean) $\frac{5}{2}$ है, और $X$ का प्रसरण (variance) $\alpha$ है, तब $24 \alpha$ का मान. . . . .है।

  • [IIT 2024]

माना एक कक्षा में $7$ विद्यार्थी है। गणित परीक्षा में इन छात्रों के औसत अंक $62$ तथा इनका प्रसरण $20$ है। एक विद्यार्थी परीक्षा में अनुत्तीर्ण हो जाता है यदि उसे $50$ से कम अंक प्राप्त होते है, तो सबसे खराब स्थिति में, असफल छात्रों की संख्या हो सकती है

  • [JEE MAIN 2022]

यदि बारंबारता बंटन

$X_i$ $2$ $3$ $4$ $5$ $6$ $7$ $8$
Frequency $f_i$ $3$ $6$ $16$ $\alpha$ $9$ $5$ $6$

का प्रसरण $3$ है, तो $\alpha$ बराबर है________________.

  • [JEE MAIN 2023]