Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $x^2+(f(x))^2 \leq 1$ for all $x \in[0,1]$ and $\int_0^1 f(x) d x=\frac{\pi}{4}$ Then, $\int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{f(x)}{1-x^2} d x$ equals

  • [KVPY 2019]
  • A

    $\frac{\pi}{12}$

  • B

    $\frac{\pi}{15}$

  • C

    $\frac{\sqrt{2}-1}{2} \pi$

  • D

    $\frac{\pi}{10}$

Similar Questions

$\int\limits_{ - 1}^{\frac{3}{2}} {|x\sin \pi x|dx} $ equals

Let $a, b, c$ be non-zero real numbers such that ; $\int\limits_0^1 {} (1 + cos^8x) (ax^2 + bx + c) dx$ $= \int\limits_0^2 {} (1 + cos^8x) (ax^2 + bx + c) dx$ , then the quadratic equation $ax^2 + bx + c = 0$ has :

Let $f:[0,1] \rightarrow[0, \infty)$ be a continuous function such that $\int_0^1 f(x) d x=10$. Which of the following statements is NOT necessarily true?

  • [KVPY 2014]

If $I$ is the greatest of the definite integrals

${I_1} = \int_0^1 {{e^{ - x}}{{\cos }^2}x\,dx} , \,\, {I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x\,dx$

${I_3} = \int_0^1 {{e^{ - {x^2}}}dx} ,\,\,{I_4} = \int_0^1 {{e^{ - {x^2}/2}}dx} ,$ then

The points of intersection of
${F_1}(x) = \int_2^x {(2t - 5)\,dt} $ and ${F_2}(x) = \int_0^x {2t\,dt,} $ are

  • [IIT 2002]