$\int\limits_{ - 1}^{\frac{3}{2}} {|x\sin \pi x|dx} $ equals
$\frac{4}{\pi}$
$\frac{3}{\pi} + \frac{1}{\pi^2}$
$ \frac{3}{\pi^2} + \frac{1}{\pi}$
None of these
Let for $x \in R , S_0( x )= x$,$S _{ k }( x )= C _{ k } x + k \int _0^{ x } S _{ k -1}(t) d t$, where $C _0=1, C _{ k }=1-\int_0^1 S _{ k -1}( x ) dx , k =1,2,3 \ldots$. Then $S _2(3)+6 C _3$ is equal to $...........$.
Number of values of $x$ satisfying the equation
$\int\limits_{ - \,1}^x {\,\left( {8{t^2} + \frac{{28}}{3}t + 4} \right)\,dt} $ $=$ $\frac{{\left( {{\textstyle{3 \over 2}}} \right)x + 1}}{{{{\log }_{(x + 1)}}\sqrt {x + 1} }}$ , is
Let $I_1 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}\sin (x)dx} $ ; $I_2 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}dx} $ ; $I_3 = \int\limits_0^{\frac{\pi }{2}} {{e^{ - {x^2}}}(1 + x)\,dx} $
and consider the statements
$I\,:$ $I_1 < I_2$
$II\,:$ $I_2 < I_3$
$III\,:$ $I_1 = I_3$
Which of the following is $(are)$ true?
The value of the integral $\sum\limits_{k = 1}^n {\int_0^1 {f(k - 1 + x)\,dx} } $ is
Which of the following statements is incorrect for the function $g(\alpha)$ for $\alpha \in R$ such that
$g(\alpha)=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin ^{\alpha} x}{\cos ^{\alpha} x+\sin ^{\alpha} x} d x$