Let $a, b, c$ be non-zero real numbers such that ; $\int\limits_0^1 {} (1 + cos^8x) (ax^2 + bx + c) dx$ $= \int\limits_0^2 {} (1 + cos^8x) (ax^2 + bx + c) dx$ , then the quadratic equation $ax^2 + bx + c = 0$ has :
no root in $(0, 2)$
atleast one root in $(0, 2)$
a double root in $(0, 2)$
none
If $\alpha \in (2 , 3) $ then number of solution of the equation $\int\limits_0^\alpha {} \cos (x + \alpha^2)\, dx = \sin \,\alpha$ is :
Let $f(x)=2+|x|-|x-1|+|x+1|, x \in R$. Consider
$(S1)$: $f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2$
$( S 2): \int_{-2}^{2} f ( x ) dx =12$Then,
If $\int_{}^{} {f(x)\,dx} = x{e^{ - \log |x|}} + f(x),$ then $f(x)$ is
The true solution set of the inequality,$\sqrt{5x-6-x^2}+\left( \frac{\pi }{2}\int\limits_{0}^{x}{dz} \right)>x\int\limits_{0}^{\pi }{{{\sin }^{2}}xdx}$ is: