मान लें कि $f: R \rightarrow R$ एक फलन निम्न प्रकार से परिभाषित किया गया है

$f(x)=\left\{\begin{array}{cl}\frac{\sin \left(x^2\right)}{x} & \text { if } x \neq 0, \\

0 & \text { if } x=0\end{array}\right.$

तब $x=0$ पर $f$

  • [KVPY 2019]
  • A

    सतत नहीं है।

  • B

    सतत परंतु अवकलनीय नहीं है।

  • C

    अवकलनीय है, और इसका व्युत्प्न $(derivative)$ सतत नहीं है।

  • D

    अवकलनीय है, और इसका व्युत्पन्न सतत है।

Similar Questions

माना $A =\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ तथा $B =\left\{y_{1}, y_{2}, y_{3}\right\}$ ऐसे दो समुच्चय हैं जिनमें क्रमशः सात तथा तीन विभित्र अवयव हैं ; तो ऐसे फलनों $f: A \rightarrow B$ की कुल संख्या, जो कि आच्छादक हैं, यदि $A$ में ऐसे ठीक तीन $x$ अवयव हैं जिनके लिए $f(x)=y_{2}$ है

  • [JEE MAIN 2015]

यदि $\phi (x) = {a^x}$, तब ${\{ \phi (p)\} ^3}$ बराबर है

$f(x)=\sin x$ द्वारा प्रदत्त फलन $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ तथा $g(x)=\cos x$ द्वारा प्रदत्त फलन $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ तथा $g$ एकैकी है, परंतु $f+g$ एकैकी नहीं है।

मान लें $f(x)$ एक चर बहुपद इस प्रकार है कि $f\left(\frac{1}{2}\right)=100$ तथा $f(x) \leq 100$ प्रत्येक वास्तविक $x$ के लिए है। निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य नहीं है?

  • [KVPY 2013]

मान लीजिए कि $f: R \rightarrow R$ एक सतत फलन इस प्रकार है कि सभी $x \in R$ के लिए $f\left(x^2\right)=f\left(x^3\right)$ है। निम्न कथनों पर विचार करें

$I$. $f$ एक विषम फलन है

$II$. $f$ एक सम फलन है

$III$. $f$ सभी जगह अवकलनीय है तब

  • [KVPY 2019]