અહી વર્તુળ $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$ ની જીવા $A B$ ની લંબાઈ $12$ છે. જો વર્તુળપર ના બિંદુ $A$ અને $B$ આગળના સ્પર્શકો બિંદુ $P$ માં છેદે છે તો બિંદુ $P$ નું જીવા $AB$ થી અંતરના પાંચ ગણા $.......$ થાય.
$71$
$73$
$72$
$74$
રેખા $2 x - y +1=0$ એ બિંદુ $(2,5)$ આગળ વર્તુળનો સ્પર્શક બને છે કે જેનું કેન્દ્ર રેખા $x-2 y=4$ પર આવેલ હોય તો વર્તુળની ત્રિજ્યા મેળવો.
બિંદુ$\left( {\frac{1}{{\sqrt 2 }},\,\frac{1}{{\sqrt 2 }}} \right)$ માંથી વર્તૂળ $x^2 + y^2 = 9$ ના અભિલબનું સમીકરણ....
ઉગમબિંદુમાંથી વર્તૂળ $ (x - 7)^2 + (y + 1)^2 = 25$ દોરેલા સ્પર્શકો વચ્ચેનો ખૂણો ....
વિધાન $(A)\ : \theta$ ના બધા મુલ્ય માટે રેખા $(x -3)\ cos\theta + (y - 3)\ sin\theta = 1$ એ વર્તૂળ $(x - 3)^2 + (y - 3)^2\,\,=1$ ને સ્પર્શેં છે.
કારણ $(R)$ : $\theta$ ના બધા મુલ્યો માટે $xcos\ \theta + y\ sin \theta =\,a$ એ વર્તૂળ $x^2 + y^2 = a^2$ ને સ્પર્શેં છે.
ધારો કે વર્તૂળો, બિંદુ $ (-1, 1)$ માંથી પસાર થાય છે અને $x$ અક્ષનો સ્પર્શકો છે. જો $(h , k) $ વર્તૂળના કેન્દ્રના યામ હોય, તો $k$ ના મૂલ્યનો ગણ કયા અંતરાલ દ્વારા દર્શાવાય ?