Let $A B$ be a chord of length $12$ of the circle $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$ If tangents drawn to the circle at points $A$ and $B$ intersect at the point $P$, then five times the distance of point $P$ from chord $AB$ is equal to$.......$
$71$
$73$
$72$
$74$
Let the tangent to the circle $C _{1}: x^{2}+y^{2}=2$ at the point $M (-1,1)$ intersect the circle $C _{2}$ : $( x -3)^{2}+(y-2)^{2}=5$, at two distinct points $A$ and $B$. If the tangents to $C _{2}$ at the points $A$ and $B$ intersect at $N$, then the area of the triangle $ANB$ is equal to
If ${c^2} > {a^2}(1 + {m^2}),$ then the line $y = mx + c$ will intersect the circle ${x^2} + {y^2} = {a^2}$
$S_1$ and $S_2$ are two concentric circles of radii $1$ and $2$ respectively. Two parallel tangents to $S_1$ cut off an arc from $S_2$. The length of the arc is
Let the normals at all the points on a given curve pass through a fixed point $(a, b) .$ If the curve passes through $(3,-3)$ and $(4,-2 \sqrt{2}),$ and given that $a-2 \sqrt{2} b=3,$ then $\left(a^{2}+b^{2}+a b\right)$ is equal to ..... .
The equations of the tangents to circle $5{x^2} + 5{y^2} = 1$, parallel to line $3x + 4y = 1$ are