If $\cos \theta + \cos 7\theta + \cos 3\theta + \cos 5\theta = 0$, then $\theta $
$\frac{{n\pi }}{4}$
$\frac{{n\pi }}{2}$
$\frac{{n\pi }}{8}$
None of these
If $\cos \,\alpha + \cos \,\beta = \frac{3}{2}$ and $\sin \,\alpha + \sin \,\beta = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta + \cos \,2\theta $ is equal to
The positive integer value of $n>3$ satisfying the equation $\frac{1}{\sin \left(\frac{\pi}{n}\right)}=\frac{1}{\sin \left(\frac{2 \pi}{n}\right)}+\frac{1}{\sin \left(\frac{3 \pi}{n}\right)}$ is
The general solution of $sin\, x + sin \,5x = sin\, 2x + sin \,4x$ is :
The most general value of $\theta $ satisfying the equations $\sin \theta = \sin \alpha $ and $\cos \theta = \cos \alpha $ is
Let $f(x)=\cos 5 x+A \cos 4 x+B \cos 3 x$ $+C \cos 2 x+D \cos x+E$, and
$T=f(0)-f\left(\frac{\pi}{5}\right)+f\left(\frac{2 \pi}{5}\right)-f\left(\frac{3 \pi}{5}\right)+\ldots+f\left(\frac{8 \pi}{5}\right)-f\left(\frac{9 \pi}{5}\right) \text {. }$Then, $T$