माना $A =\{ x \in R :| x +1| < 2\}$ तथा $B =\{ x \in R :| x -1| \geq 2\}$ है। तब निम्न में से कौनसा कथन सत्य नहीं है ?

  • [JEE MAIN 2022]
  • A

    $A - B =(-1,1)$

  • B

    $B - A = R -(-3,1)$

  • C

    $A \cap B =(-3,-1]$

  • D

    $A \cup B = R -[1,3)$

Similar Questions

यदि $S$ धनात्मक पूर्णाकों का एक क्रमित युग्म $(x, y)$ इस प्रकार है कि $x^2-y^2=12345678$ तब

  • [KVPY 2017]

माना समुच्चय $\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}^2-2^{\mathrm{y}}=2023, \mathrm{x}, \mathrm{y} \in \mathbb{N}\right\}$ है। तो $\sum_{(x, y) \in C}(x+y)$ बराबर है ............

  • [JEE MAIN 2024]

समुच्चय $\{1,2,3, \ldots, 100\}$ के $A_1, A_2, \ldots, A_m$ ऐसे अरिक्त $(non\,empty)$ उपसमुच्चय है कि

$(1)$ संख्याएँ $\left|A_1\right|,\left|A_2\right|, \ldots,\left|A_m\right|$ अभिन्न है

$(2)$ $A_1, A_2, \ldots, A_m$ युगल रूप से $(pair-wise)$ असंयुक्त $(disjoint)$ है

(जहाँ $|A|$ समुच्चय $A$ में अवयवों $(elements)$ की संख्या है) तब $m$ का महत्तम संभव मान होगा

  • [KVPY 2016]

माना $U _{ i =1}^{50} X _{ i }= U _{ i =1}^{ n } Y _{ i }= T$ है, जहाँ प्रत्येक $X _{ i }$ में $10$ अवयव हैं तथा प्रत्येक $Y_{i}$ में $5$ अवयव में है। यदि $T$ का प्रत्येक अवयव ठीक $20, X _{ i }$ समुच्चयों का एक अवयव है तथा ठीक $6, Y _{ i }$ समुच्चयों का एक अवयव है, तो $n$ का मान है

  • [JEE MAIN 2020]

समुच्चय $\left\{\mathrm{n} \in \mathbb{N}: 10 \leq \mathrm{n} \leq 100\right.$ तथा $3^{\mathrm{n}}-3,7$ का एक गुणज है \} में अवयवों की संख्या है :

  • [JEE MAIN 2023]