माना $U _{ i =1}^{50} X _{ i }= U _{ i =1}^{ n } Y _{ i }= T$ है, जहाँ प्रत्येक $X _{ i }$ में $10$ अवयव हैं तथा प्रत्येक $Y_{i}$ में $5$ अवयव में है। यदि $T$ का प्रत्येक अवयव ठीक $20, X _{ i }$ समुच्चयों का एक अवयव है तथा ठीक $6, Y _{ i }$ समुच्चयों का एक अवयव है, तो $n$ का मान है
$45$
$15$
$50$
$30$
माना $A =\{ n \in N :$ म.स.प. $( n , 45)=1\}$ तथा माना $B =\{2 k : k \in\{1,2, \ldots, 100\}\}$ है। तब $A \cap B$ के सभी अवयवों का योगफल है
समुच्चय $\left\{\mathrm{n} \in \mathbb{N}: 10 \leq \mathrm{n} \leq 100\right.$ तथा $3^{\mathrm{n}}-3,7$ का एक गुणज है \} में अवयवों की संख्या है :
सेट $ S=\{(x, y, z): x, y, z \in Z, x+2 y+3 z=42$ $\mathrm{x}, \mathrm{y}, \mathrm{z} \geq 0\}$ में तत्वों की संख्या ढूंढें:
यदि $A =\{ x \in R : \quad| x \quad-2| > 1\}$, $B=\left\{x \in R : \sqrt{ x ^{2}-3} > 1\right\}, C =\{ x \in R :| x -4| \geq 2\}$ हैं तथा समी पूर्णाकों का समुच्चय $Z$ है, तो समुच्चय $( A \cap B \cap C )^{ C } \cap Z$ के उपसमुच्चयों की संख्या है
माना $S=\{1,2,3, \ldots ., 100\}$, तो $S$ के उन सभी अरिक्त (non-empty) उपसमुच्चयों $A$ जिनके अवयवों का गुणनफल सम है, की संख्या है