અહી ઉપવલય $E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{a}\,>\,\mathrm{b} $ આપેલ છે. અને $\mathrm{E}_{2}$ એ બીજો ઉપવલય છે કે જે $E_{1}$ ની મુખ્ય અક્ષના અંત્યબિંદુઓને સ્પર્શ અને $E_{2}$ ની નાભીઓ $E_{1}$ ની ગૌણઅક્ષના અંત્ય બિંદુ હોય છે. જો $E_{1}$ અને $E_{2}$ ની ઉત્કેન્દ્રિતા સમાન હોય તો તેની કિમંત મેળવો.
$\frac{-1+\sqrt{3}}{2}$
$\frac{-1+\sqrt{6}}{2}$
$\frac{-1+\sqrt{5}}{2}$
$\frac{-1+\sqrt{8}}{2}$
વર્તૂળ $(x - 1)^2 + y^2 = 1$ ના વ્યાસને ગૌણ અક્ષની અર્ધલંબાઈ તરીકે અને વર્તૂળ $x^2 + (y - 2)^2 = 4$ ના વ્યાસને પ્રધાન અક્ષની અર્ધ લંબાઈ તરીકે લઈને એક ઉપવલય દોર્યો. જો ઉપવલયનું કેન્દ્ર ઉગમબિંદુ આગળ હોય અને તેની અક્ષો યામાક્ષો હોય, તો ઉપવલયનું સમીકરણ મેળવો.
ધારો કે કોઈક ઉપવલય $\frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a > b$ ની ઉત્કેન્દ્રતા $\frac{1}{4}$ છે. જો આ ઉપવલય,બિંદુ $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$ માંથી પસાર થતો હોય તો,$a^{2}+b^{2}=\dots\dots\dots$
ધારોકે કેન્દ્ર $(1,0)$ અને નાભિલંબની લંબાઈ $\frac{1}{2}$ હોય તેવા ઊપવલયની પ્રધાન અક્ષ -અક્ષ પર છે જો તેની ગૌણ અક્ષ નાભિઓ પર $60^{\circ}$ ખૂણો આંતરે, તો તેની પ્રધાન અક્ષ તથા ગૌણ અક્ષની લંબાઈઓના સરવાળાનો વર્ગ $......$ થાય.
ઉગમબિંદુ આગળ કેન્દ્રવાળા ઉપવલયની ઉત્કેન્દ્રતા $1/2$ છે. જો એક નિયામિકા $x = 4$ હોય તો ઉપવલયનું સમીકરણ :
બે ગણ $A$ અને $B$ નીચે પ્રમાણે છે: $A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1$ અને $\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ તો : . . . . .