माना $a_{1}, a_{2}, a_{3}, \ldots$ एक $A.P.$ है। यदि $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ है, तो $\frac{a_{11}}{a_{10}}$ बराबर है
$\frac{19}{21}$
$\frac{100}{121}$
$\frac{21}{19}$
$\frac{121}{100}$
यदि ${a^2},\,{b^2},\,{c^2}$ समान्तर श्रेणी में हैं, तो $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ होंगे
चार संख्यायें समान्तर श्रेणी में हैं। यदि प्रथम तथा अंतिम पदों का योग $8$ है तथा दोनों मध्य पदों का गुणनफल $15$ है, तो श्रेणी की न्यूनतम संख्या होगी
तीन संख्यायें समान्तर श्रेणी में हैं जिनका योगफल $33$ है एवं गुणनफल $792$ है, तो इनमें से सबसे छोटी संख्या है
यदि $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि $a, b, c$ समांतर श्रेणी में हैं।
यदि श्रेणी $\sqrt{3}+\sqrt{75}+\sqrt{243}+\sqrt{507}+\ldots$ के प्रथम $n$ पदों का योग $435 \sqrt{3}$ है, तो $n$ बराबर है