माना $f: N \rightarrow N$ एक फलन है, जिसके लिए $f( m + n )=f( m )+f( n ) \forall m , n \in N$ है। यदि $f(6)=18$ है, तो $f(2) \cdot f(3)$ बराबर है

  • [JEE MAIN 2021]
  • A

    $6$

  • B

    $54$

  • C

    $18$

  • D

    $36$

Similar Questions

माना एक अवकलनीय फलन $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ के लिए $5 f(x+y)=f(x) \cdot f(y), \forall x, y \in R$ है। यदि $\mathrm{f}(3)=320$, तो $\sum_{\mathrm{n}=0}^5 \mathrm{f}(\mathrm{n})$ बराबर है :

  • [JEE MAIN 2023]

माना : $A =\{0,1,2,3,4,5,6,7\}$ एक समुच्चय है। तो फलनों $f: A \rightarrow A$, जो आच्छादक तथा एकैकी दोनों है तथा $f(1)+f(2)=3-f(3)$ को संतुष्ट करते है, की संख्या बराबर है ........... |

  • [JEE MAIN 2021]

यदि फलन

$\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ का

प्रांत $(\alpha, \beta) \cup(\gamma, \delta]$ है, तो $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)$  बराबर है

  • [JEE MAIN 2023]

फलन $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ का डोमेन (प्रान्त) है

यदि $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ तथा $m(b)$ दिये हुए $b$ के लिए, $f(x)$ का न्यूनतम मान है, तब $m(b)$ का परिसर (रेंज) है

  • [IIT 2001]