Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ is a tautology. Then :

  • [JEE MAIN 2021]
  • A

    $*=\vee, \square=\vee$

  • B

    $*=\wedge, \square=\wedge$

  • C

    $*=\wedge, \square=\vee$

  • D

    $*=\vee, \square=\wedge$

Similar Questions

Negation of statement "If I will go to college, then I will be an engineer" is -

Among the statements:

$(S1)$ $\quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )$

$(S2) \quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))$

  • [JEE MAIN 2023]

The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to 

  • [JEE MAIN 2020]

If the Boolean expression $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ is a tautology, then the Boolean expression $p *(\sim q )$ is equivalent to

  • [JEE MAIN 2021]

If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:

  • [JEE MAIN 2021]