If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:
$\mathrm{T}\, \mathrm{F} \,\mathrm{T}$
$\mathrm{F\,F\,T}$
$\mathrm{T\,F\,F}$
$\mathrm{F\,T\,F}$
Suppose $p, q, r$ are positive rational numbers such that $\sqrt{p}+\sqrt{q}+\sqrt{r}$ is also rational. Then
Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
If $p$ : It rains today, $q$ : I go to school, $r$ : I shall meet any friends and $s$ : I shall go for a movie, then which of the following is the proposition : If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie.
The contrapositive of the statement "If you will work, you will earn money" is ..... .
If $p, q, r$ are simple propositions, then $(p \wedge q) \wedge (q \wedge r)$ is true then