If the Boolean expression $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ is a tautology, then the Boolean expression $p *(\sim q )$ is equivalent to

  • [JEE MAIN 2021]
  • A

    $q \Rightarrow p$

  • B

    $\sim q \Rightarrow p$

  • C

    $p \Rightarrow \sim q$

  • D

    $p \Rightarrow q$

Similar Questions

The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to

Which of the following is logically equivalent to $\sim(\sim p \Rightarrow q)$

The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is

If the Boolean expression $\left( {p \oplus q} \right) \wedge \left( { \sim p\,\Theta\, q} \right)$ is equivalent to $p \wedge q$, where $ \oplus $ , $\Theta  \in \left\{ { \wedge , \vee } \right\}$ , ,then the ordered pair $\left( { \oplus ,\Theta } \right)$ is 

  • [JEE MAIN 2019]

Let $p, q, r$ denote arbitrary statements. Then the logically equivalent of the statement $p\Rightarrow (q\vee r)$ is

  • [JEE MAIN 2014]