જો  $x$ એ સમીકરણ $\sqrt {2x + 1}  - \sqrt {2x - 1}  = 1, \left( {x \ge \frac{1}{2}} \right)$ નો ઉકેલ હોય તો  $\sqrt {4{x^2} - 1} $ ની કિમત મેળવો. 

  • [JEE MAIN 2016]
  • A

    $\frac{3}{4}$

  • B

    $\frac{1}{2}$

  • C

    $2\sqrt 2 $

  • D

    $2$

Similar Questions

જો $\alpha $ અને $\beta $ દ્રીઘાત સમીકરણ  $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$  ના ઉકેલો હોય તો $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ ની કિમત મેળવો. 

  • [JEE MAIN 2019]

ધારોકે $p$ અને $q$ બે એવી વાસ્તવિક સંખ્યાઓ છે કે જેથી $p+q=3$ અને $p^{4}+q^{4}=369$. તો $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}=$

  • [JEE MAIN 2022]

જો $a$ ની બધીજ કિમતોનો ગણ અંતરાલ $(\alpha, \beta)$ છે કે જેથી સમીકરણ $5 x ^3-15 x - a =0$ ત્રણ ભિન્ન વાસ્તવિક બીજ હોય તો  $\beta-2 \alpha$ ની કિમંતો મેળવો.

  • [JEE MAIN 2025]

$'K'$ ની કેટલી ધન પૂર્ણાક કિમતો મળે કે જેથી સમીકરણ $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ ને બરાબર ત્રણ વાસ્તવિક ઉકેલો મળે છે ? 

જો $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ અને $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ આપેલ છે અને જો દ્રીઘાત સમીકરણ $8 x^{2}+b x+c=0$ ના બીજો $\alpha^{1 / 5}$ અને $\beta^{1 / 5}$, હોય તો  $c-b$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]