माना $a, b, c$ एक समान्तर श्रेढ़ी में है। माना त्रिभुज जिसके शीर्ष बिन्दु $( a , c ),(2, b )$ तथा $( a , b )$ है, का केन्द्रक $\left(\frac{10}{3}, \frac{7}{3}\right)$ है। यदि समीकरण, $a x ^{2}+ bx +1=0$ के मूल $\alpha$ तथा $\beta$ है, तो $\alpha^{2}+\beta^{2}-\alpha \beta$ का मान है
$\frac{71}{256}$
$\frac{69}{256}$
$-\frac{69}{256}$
$-\frac{71}{256}$
माना $3,6,9,12, \ldots 78$ पदों तक तथा $5,9,13$, $17, \ldots 59$ पदों तक दो श्रेणीयाँ है। तब दोनों श्रेढ़ीयों के उभयनिप्ठ पदों का योगफल है
यदि $x,y,z$ समान्तर श्रेणी में हों तथा ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$, ${\tan ^{ - 1}}z$ भी समान्तर श्रेणी में हों, तब
माना ${S_n}$ एक समान्तर श्रेणी के $n$पदों का योग दर्शाता है। यदि ${S_{2n}} = 3{S_n}$, तो अनुपात $\frac{{{S_{3n}}}}{{{S_n}}} = $
समांतर श्रेणी $-6,-\frac{11}{2},-5, \ldots$ के कितने पदों का योगफल $-25$ है ?
यदि $A$, दो संख्याओं का समान्तर माध्य हो और $S$, उन दो संख्याओं के बीच $n$ समान्तर माध्यों का योग हो, तो