Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .
$\frac{71}{256}$
$\frac{69}{256}$
$-\frac{69}{256}$
$-\frac{71}{256}$
In an $A.P.,$ if $p^{\text {th }}$ term is $\frac{1}{q}$ and $q^{\text {th }}$ term is $\frac{1}{p},$ prove that the sum of first $p q$ terms is $\frac{1}{2}(p q+1),$ where $p \neq q$
Sum of the first $p, q$ and $r$ terms of an $A.P.$ are $a, b$ and $c,$ respectively. Prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
A farmer buys a used tractor for $Rs$ $12000 .$ He pays $Rs$ $6000$ cash and agrees to pay the balance in annual instalments of $Rs$ $500$ plus $12 \%$ interest on the unpaid amount. How much will the tractor cost him?
There are $15$ terms in an arithmetic progression. Its first term is $5$ and their sum is $390$. The middle term is
Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?
$(A)$ $T_{20}=1604$
$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$
$(C)$ $T_{30}=3454$
$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$