If $a > 0$and discriminant of $a{x^2} + 2bx + c$is negative, then $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ is

  • [AIEEE 2002]
  • A

    Positive

  • B

    $(ac - {b^2})(a{x^2} + 2bx + c)$

  • C

    Negative

  • D

    $0$

Similar Questions

Let the system of equations $x+2 y+3 z=5$, $2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :

  • [JEE MAIN 2024]

The system of equations $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ has

Evaluate $\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ are equal to

The number of values of $\theta \in (0,\pi)$ for which the system of linear equations
$x + 3y + 7z = 0$
$-x + 4y + 7z = 0$
$(sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ has a non-trivial solution, is

  • [JEE MAIN 2019]