$\alpha$ અને $\beta$ એ સમીકરણ $x^{2}-3 x+p=0$ ના બીજો હોય તથા $\gamma$ અને $\delta$ એ સમીકરણ $x^{2}-6 x+q=0$ ના બીજો છે. જો $\alpha$ $\beta, \gamma, \delta$ એ સમગુણોત્તર શ્રેણીમાં હોય તો $(2 q+p):(2 q-p)$ મેળવો
$3: 1$
$33: 31$
$9: 7$
$5: 3$
સમગુણોત્તર શ્રેણીમાં આપેલી ત્રણ સંખ્યાઓનો સરવાળો $38$ અને ગુણાકાર $1728$ છે, તો તેમાંની સૌથી મોટી સંખ્યા....... છે.
અનંત સમગુણોત્તર શ્રેણીનું પ્રથમ પદ એ તેના પછીના પદોના સરવાળા કરતાં બમણું હોય, તો સામાન્ય ગુણોત્તર કેટલો હોય ?
નીશ્ચાયક $\Delta \, = \,\left| {\begin{array}{*{20}{c}}
a&b&{a\alpha \, + \,b\,} \\
b&c&{b\alpha \, + \,c} \\
{a\alpha \, + \,b}&{b\alpha \, + \,c}&0
\end{array}} \right| \, = \,0\,$ થાય, જો $=................$
ધારોકે $a_1, a_2, a_3, \ldots$ એ વધતી પૂર્ણાંક સંખ્યાઓ ની સમગુણોતર શ્રેણી છે. જો ચોથા અને છઠા પદોનો ગુણાકાર $9$ હોય અને સાતમુપદ $24$ હોય, તો $a_1 a_9+a_2 a_4 a_9+a_5+a_7=...................$
સમગુણોત્તર શ્રેણીનાં પ્રથમ $3$ પદોનો સરવાળો $16$ છે અને પછીનાં ત્રણ પદોનો સરવાળો $128$ છે, તો આ શ્રેણીનું પ્રથમ પદ, સામાન્ય ગુણોત્તર અને $n$ પદોનો સરવાળો શોધો.