Let $\alpha$ and $\beta$ be the roots of $x^{2}-3 x+p=0$ and $\gamma$ and $\delta$ be the roots of $x^{2}-6 x+q=0 .$ If $\alpha$ $\beta, \gamma, \delta$ form a geometric progression. Then ratio $(2 q+p):(2 q-p)$ is
$3: 1$
$33: 31$
$9: 7$
$5: 3$
If ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where $i = \sqrt{-1}),$ then value of $x_1.x_2.x_3......\infty ,$ is :-
If ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$, where $a,b,c$ are non-zero numbers. Then $a,b,c$ are in
Let $b_1, b_2,......, b_n$ be a geometric sequence such that $b_1 + b_2 = 1$ and $\sum\limits_{k = 1}^\infty {{b_k} = 2} $ Given that $b_2 < 0$ , then the value of $b_1$ is
If the sum of the series $1 + \frac{2}{x} + \frac{4}{{{x^2}}} + \frac{8}{{{x^3}}} + ....\infty $ is a finite number, then