Let $\alpha$ and $\beta$ be the roots of $x^{2}-3 x+p=0$ and $\gamma$ and $\delta$ be the roots of $x^{2}-6 x+q=0 .$ If $\alpha$ $\beta, \gamma, \delta$ form a geometric progression. Then ratio $(2 q+p):(2 q-p)$ is 

  • [JEE MAIN 2020]
  • A

    $3: 1$

  • B

    $33: 31$

  • C

    $9: 7$

  • D

    $5: 3$

Similar Questions

If  ${x_r} = \cos (\pi /{3^r}) - i\sin (\pi /{3^r}),$ (where  $i = \sqrt{-1}),$ then value  of $x_1.x_2.x_3......\infty ,$ is :-

If ${a^2} + a{b^2} + 16{c^2} = 2(3ab + 6bc + 4ac)$, where $a,b,c$ are non-zero numbers. Then $a,b,c$ are in

Let $b_1, b_2,......, b_n$ be a geometric sequence such that $b_1 + b_2 = 1$ and $\sum\limits_{k = 1}^\infty  {{b_k} = 2} $ Given that $b_2 < 0$ , then the value of $b_1$ is 

Let $S = N \cup\{0\}$. Define a relation $R$ from S to $R$ by: $R =\left\{(x, y): \log _e y=x \log _e\left(\frac{2}{5}\right), x \in S, y \in R \right\}$ Then, the sum of all the elements in the range of $R$ is equal to

  • [JEE MAIN 2025]

If the sum of the series $1 + \frac{2}{x} + \frac{4}{{{x^2}}} + \frac{8}{{{x^3}}} + ....\infty $ is a finite number, then