Let $b_1, b_2,......, b_n$ be a geometric sequence such that $b_1 + b_2 = 1$ and $\sum\limits_{k = 1}^\infty  {{b_k} = 2} $ Given that $b_2 < 0$ , then the value of $b_1$ is 

  • A

    $2 - \sqrt 2 $

  • B

    $1 + \sqrt 2 $

  • C

    $2 + \sqrt 2 $

  • D

    $4 + \sqrt 2 $

Similar Questions

Let $\left\langle a_n\right\rangle$ be a sequence such that $a_0=0, a_1=\frac{1}{2}$ and $2 a_{n+2}=5 a_{n+1}-3 a_n, n=0,1,2,3, \ldots \ldots$. Then $\sum_{k=1}^{100} a_k$ is equal to :

  • [JEE MAIN 2025]

If $a,\;b,\;c$ are in $A.P.$, then ${10^{ax + 10}},\;{10^{bx + 10}},\;{10^{cx + 10}}$ will be in

If $a$,$b$,$c \in {R^ + }$ are such that $2a$,$b$ and $4c$ are in $A$.$P$ and $c$,$a$ and $b$ are in $G$.$P$., then

Find the sum of the following series up to n terms:

$6+.66+.666+\ldots$

If $\frac{{x + y}}{2},\;y,\;\frac{{y + z}}{2}$ are in $H.P.$, then $x,\;y,\;z$ are in