Let $b_1, b_2,......, b_n$ be a geometric sequence such that $b_1 + b_2 = 1$ and $\sum\limits_{k = 1}^\infty {{b_k} = 2} $ Given that $b_2 < 0$ , then the value of $b_1$ is
$2 - \sqrt 2 $
$1 + \sqrt 2 $
$2 + \sqrt 2 $
$4 + \sqrt 2 $
If $a,\;b,\;c$ are in $A.P.$, then ${10^{ax + 10}},\;{10^{bx + 10}},\;{10^{cx + 10}}$ will be in
If $a$,$b$,$c \in {R^ + }$ are such that $2a$,$b$ and $4c$ are in $A$.$P$ and $c$,$a$ and $b$ are in $G$.$P$., then
Find the sum of the following series up to n terms:
$6+.66+.666+\ldots$
If $\frac{{x + y}}{2},\;y,\;\frac{{y + z}}{2}$ are in $H.P.$, then $x,\;y,\;z$ are in