माना $a _{1}, a _{2}, \ldots, a _{ n }$ एक दी गई समांतर श्रेढ़ी है, जिसका सार्वअंतर एक पूर्णाक है तथा $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ है। यदि $a _{1}=1, a _{ n }=300$ तथा $15 \leq n \leq 50$, हैं, तो क्रमित युग्म $\left( S _{ n -4,{ }^{ n -4}}\right)$ बराबर है
$(2480,249)$
$(2490,249)$
$(2490,248)$
$(2480,248)$
यदि किसी समांतर श्रेणी के प्रथम $p, q, r$ पदों का योगफल क्रमशः $a, b$ तथा $c$ हो तो सिद्ध कीजिए कि
$\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
यदि $n$ विषम या सम हो,तो श्रेणी $1 - 2 + 3 - 4 + 5 - 6 + ......$ के $n$ पदों का योग होगा
क्रमागत पूर्णांकों (Consecutive integers) की समान्तर श्रेणी का प्रथम पद ${p^2} + 1$ है। इस श्रेणी के $(2p + 1)$ पदों का योग है
यदि $a,\;b,\;c$ समान्तर श्रेणी में हैं, तो $\frac{1}{{bc}},\;\frac{1}{{ca}},\;\frac{1}{{ab}}$ होंगे
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=\frac{2 n-3}{6}$