माना $A$ और $B$ दो स्वतंत्र घटनायें हैं। दोनों के एक साथ होने की प्रायिकता $1/6$ और दोनों के न होने की प्रायिकता $1/3$ है, तब $A$ के होने की प्रायिकता है
यदि $A, B, C$ ऐसी घटनाएँ हैं कि $P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ तो $P\,(A + B) = $
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ परस्पर अपवर्जी हैं।
तीन घटनाओं $A , B$ तथा $C$ की प्रायिकताएं $P ( A )=0.6$, $P ( B )=0.4$ तथा $P ( C )=0.5$ है। यदि $P ( A \cup B )=0.8$, $P ( A \cap C )=0.3, P ( A \cap B \cap C )=0.2, P ( B \cap$ $C )=\beta$ तथा $P ( A \cup B \cup C )=\alpha$, जहाँ $0.85 \leq \alpha \leq 0.95$, तो $\beta$ निम्न में से किस अंतराल में है
$A$ व $B$ दो परस्पर अपवर्जी घटनायें इस प्रकार हैं कि $P(A) = 0.45$ व $P(B) = 0.35,$ तो $P (A$ या $B$) का मान है