જો $f(x) = cos(\sqrt P \,x),$ જ્યા $P = [\lambda], ([.]$ = $G.I.F.)$ અને $f(x)$ નુ આવર્તમાન $\pi$ હોય તો,
$\lambda \, \in [4, 5]$
$\lambda \, \in [1, 2)$
$\lambda \, \in [4, 5)$
$\lambda$ ની કોઇ કિમત શક્ય નથી
જો $y = 3[x] + 1 = 4[x -1] -10$ હોય તો $[x + 2y]$ = ........... (જ્યા $[.]$ = $G.I.F.$)
જો $\,\,f(x) = \left\{ {\begin{array}{*{20}{c}}
{3 + x;\,\,\,\,\,x \geqslant 0} \\
{2 - 3x;\,\,\,\,\,x < 0}
\end{array}} \right.$ હોય તો $\mathop {\lim }\limits_{x \to 0} f(f(x))$ ની કિમત મેળવો.
ધારો કે $f : N \rightarrow R$ એવું વિધેય છે કે જેથી પ્રાકૃતિક સંખ્યાઓ $x$ અને $y$ માટે $f(x+y)=2 f(x) f(y)$. જો $f(1)=2$, તો $\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ થાય તે માટેની $\alpha$ ની કિમત ....... છે.
સમીકરણ $|x\,-\,2| + |x\,-\,1| = x\,-\,3$ ને ઉકેલો.
ધારોકે $f: R \rightarrow R$ એ કોઈ $m$ માટે વ્યાખ્યાયિત એવુ વિધેય છે કે જયાં $f(x)=\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x+m-2)\}$ અને $f$ નો વિસ્તાર $[0,2]$ છે. તો $m$ નું મૂલ્ય $.........$ છે.