ધારો કે  $f : N \rightarrow R$ એવું વિધેય છે કે જેથી  પ્રાકૃતિક સંખ્યાઓ $x$ અને $y$ માટે $f(x+y)=2 f(x) f(y)$. જો $f(1)=2$, તો $\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ થાય તે  માટેની $\alpha$ ની કિમત ....... છે.

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $6$

Similar Questions

વિધેય $f(x) = \;[x]\; - x$ નો વિસ્તાર મેળવો.

ધારો કે $f: R \rightarrow R$ એ $f(x)=\frac{2 e^{2 x}}{e^{2 x}+\varepsilon}$ મુજબ વ્યાખ્યાયિત છે. તો $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots .+f\left(\frac{99}{100}\right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]

જો  $0 < x < \frac{\pi }{2},$ હોય તો

જો ચલિત વિધેય નો વક્ર બિંદુ $(3,4)$ આગળ સમિત હોય તો $\sum\limits_{r = 0}^6 {f(r) + f(3)} $ ની કિમત ...... થાય.

વિધેય $f(x) = \frac{{x + 2}}{{|x + 2|}}$ નો વિસ્તાર મેળવો.