ધારોકે $\alpha, \beta$ એ સમીકરણ $x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$ નાં ભિન્ન બીજ છે અને $a_n=\alpha^n+\beta^n$. તો $\frac{a_{2023}+a_{2025}}{a_{2024}}$ નું ન્યૂનતમ મૂલ્ય .............છે.
$1 / 4$
$-1 / 2$
$-1 / 4$
$1 / 2$
જો $a, b, c \in R$ અને $1$ એ સમીકરણ $ax^2 + bx + c = 0$ ના ઉકેલો હોય તો વક્ર y $= 4ax^2 + 3bx+ 2c, a \ne 0$ એ $x-$ ક્યાં બિંદુએ છેદશે ?
દ્રીઘાત સમીકરણ $(1 + 2m)x^2 -2(1+ 3m)x + 4(1 + m),$ $x\in R,$ હમેંશા ધન રહે તે માટે $m$ ની કેટલી પૂર્ણાંક કિમંતો મળે ?
જો દરેક $x \in R$ માટે,${x^2} + 2ax + 10 - 3a > 0$ તો .
ધારો કે $S$ એ સમીકરણ $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| $ ના વાસ્તવિક બીજનો ગણ હોય તો $\mathrm{S}$ એ .. . .
જો $\alpha , \beta $ એ સમીકરણ $x^2 - 2x + 4 = 0$ ના બીજો હોય તો $\alpha ^n +\beta ^n$ ની કિમત મેળવો