Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

$L.H.S. =\frac{1+\sec A }{\sec A }=\frac{1+\frac{1}{\cos A }}{\frac{1}{\cos A }}$

$=\frac{\frac{\cos A+1}{\cos A}{1}}{\frac{1}{\cos A}}=(\cos A+1)$

$=\frac{(1-\cos A)(1+\cos A)}{(1-\cos A)}$

$=\frac{1-\cos ^{2} A}{1-\cos A}=\frac{\sin ^{2} A}{1-\cos A}$

$= R.H.S.$

Similar Questions

Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.

If $\cot \theta=\frac{7}{8},$ evaluate:

$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$

$(ii)$ $\cot ^{2} \theta$

Evaluate:

$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$

Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$

Express the trigonometric ratios $\sin A , \sec A$ and $\tan A$ in terms of $\cot A$.