Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$
Since,$\cos ^{2} A+\sin ^{2} A=1,$ therefore
$\cos ^{2} A =1-\sin ^{2} A , i . e ., \cos A =\pm \sqrt{1-\sin ^{2} A }$
This gives $\quad \cos A =\sqrt{1-\sin ^{2} A }$
Hence, $\quad \tan A =\frac{\sin A }{\cos A }=\frac{\sin A }{\sqrt{1-\sin ^{2} A }}$
and $\sec A =\frac{1}{\cos A }=\frac{1}{\sqrt{1-\sin ^{2} A }}$
In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:
$(i)$ $\sin A, \cos A$
$(ii)$ $\sin C, \cos C$
In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$
Prove that $\sec A(1-\sin A)(\sec A+\tan A)=1$
If $3 \cot A=4,$ check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.