In the given nuclear reaction $A, B, C, D, E$ represents
$_{92}{U^{238}}{\xrightarrow{\alpha }_B}T{h^A}{\xrightarrow{\beta }_D}P{a^C}{\xrightarrow{E}_{92}}{U^{234}}$
$A = 234, B = 90, C = 234, D = 91, E = \beta $
$A = 234, B = 90, C = 238, D = 94, E = \alpha $
$A = 238, B = 93, C = 234, D = 91, E = \beta $
$A = 234, B = 90, C = 234, D = 93, E = \alpha $
Write nuclear reaction equations for
$(i)$ $\alpha$ -decay of $^{226}_{88} Ra$
$(ii)$ $\alpha$ -decay of $_{94}^{242} Pu$
$(iii)$ $\beta$ -decay of $_{15}^{32} P$
$(iv)$ $\beta$ -decay of $^{210}_{83}Bi$
$(v)$ $\beta^{+}$ -decay of $_{6}^{11} C$
$(vi)$ $\beta^{+}$ -decay of $_{43}^{97} Tc$
$(vii)$ Electron capture of $^{120}_{54} Xe$
After one $\alpha $ and two $\beta $ emissions
The total number of $\alpha$ and $\beta$ particles emitted in the nuclear reaction ${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{82}^{214} \mathrm{~Pb}$ is
The radioactive nucleus $_7{N^{13}}$decays to $_6{C^{13}}$ through the emission of
What is the respective number of $\alpha $ and $\beta $ particles emitted in the following radioactive decay
$_{90}{X^{200}}{ \to _{80}}{Y^{168}}$